

MATHEMATICS SPECIALIST Calculator-assumed UNIT 1 Semester 1 2023 Marking Key

Marking keys outline the expectations of examination responses. They help to ensure a consistent interpretation of the criteria that guide the awarding of marks.

© Copyright Academic Group Pty Ltd 2023.

C)	Academic Associates	See next page
>		Occ next page

Section Two: Calculator Assumed

Question	8
	-

Given $x \in \mathbb{R}$, use the following statement to answer the questions below:

If $x^2 + 5x < 0$ then x < 0

(a) (i) Write down the converse of this statement.

Solution	Specific behaviours	Point
If $x < 0$ then $x^2 + 5x < 0$	✓ Writes down the converse.	1.1.1

(ii) Use a counter-example to prove the converse is false.

Solution		Specific behaviours	Point
If $x = -6$	✓	Determines a suitable value of x .	1.1.5
then $x^2 + 5x = 36 - 30 = 6 < 0$	\checkmark	Shows the statement is false.	

(b) (i) Write down the contrapositive of this statement.

Solution	Specific behaviours	Point
If $x \ge 0$ then $x^2 + 5x \ge 0$	\checkmark Writes down the contrapositive.	1.1.1

⁽ii) Prove the contrapositive is true.

Solution		Specific behaviours	Point
If $x \ge 0$ then $x^2 \ge 0$ and $5x \ge 0$	\checkmark	Indicates individual terms of	1.1.1
Hence $x^2 + 5x \ge 0$		$x^2 + 5x$ are positive.	
∴ contrapositive is true	\checkmark	Explains why statement is true.	

(c) Hence, determine the truth of the original statement. Justify your answer. (2 marks)

Solution		Specific behaviours	Point
As the contrapositive is true, then the	\checkmark	States original statement is true.	1.1.1
original statement is true.	\checkmark	Explains using the contrapositive.	

(d) Explain why the statement $x^2 + 5x < 0 \Leftrightarrow x < 0$ is false.

Solution		Specific behaviours	Point
To be true both the original statement	\checkmark	Explains using converse.	1.1.3
and converse must be true, but the			
converse is fale.			

(92 marks)

(9 marks)

(2 marks)

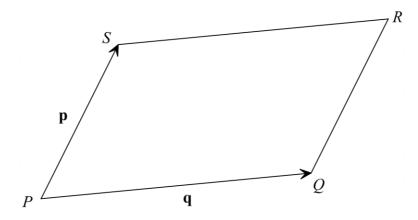
(1 mark)

(1 mark)

(2 marks)

(6 marks)

The diagram below shows parallelogram *PQRS*, with $\overrightarrow{PQ} = \mathbf{q}$ and $\overrightarrow{PS} = \mathbf{p}$.



(a) Write down a vector that represents \overrightarrow{PR} into terms of **p** and **q**. (1 mark)

Solution	Specific behaviours	Point
$\overrightarrow{PR} = \mathbf{p} + \mathbf{q}$	 ✓ Determines expression. 	1.3.4

(b) Write down a vector that represents \overrightarrow{SQ} into terms of **p** and **q**.

Solution	Specific behaviours	Point
$\overrightarrow{SQ} = \mathbf{q} - \mathbf{p}$	✓ Determines expression.	1.3.4

(c) Determine an expression for $\overrightarrow{PR} \bullet \overrightarrow{SQ}$.

(2 marks)

(1 mark)

Solution	Specific behaviours	Point
$\overrightarrow{PR} \bullet \overrightarrow{SQ} = (\mathbf{p} + \mathbf{q}) \bullet (\mathbf{q} - \mathbf{p})$	✓ Correctly expands out brackets.	1.3.10
$= \mathbf{p} \cdot \mathbf{q} - \mathbf{p} ^2 + \mathbf{q} ^2 - \mathbf{q} \cdot \mathbf{p}$	/	1.3.12
$= \mathbf{q} ^2 - \mathbf{p} ^2$	 Simplifies expression. 	

(d) Describe geometrically shape *PQRS*, when $\overrightarrow{PR} \cdot \overrightarrow{SQ} = 0$, justifying your answer. (2 marks)

See next page

Solution	Specific behaviours	Point
$ \mathbf{q} ^2 - \mathbf{p} ^2 = 0$		1.1.16
$\Rightarrow \mathbf{p} = \mathbf{q} $	✓ Recognises $ \mathbf{p} = \mathbf{q} $.	
PQRS is a rhombus	\checkmark States <i>PQRS</i> is a rhombus.	

(ii) How many six-digit numbers will contain the digits 789 in that order?

Question 10

(i)

(a)

Solution		Specific behaviours	Point
4! = 24	\checkmark	Determines answer.	1.2.1

numbers.

Total arrangements.

Specific behaviours

Arrangements of odd and even

(iii) How many six-digit numbers will **not** have the prime numbers adjacent? (2 marks)

Solution	Specific behaviours	Point
$5! \times 2!$ = 240 have 5 and 7 adjacent	 ✓ Determines arrangements with 5 and 7 adjacent. ✓ Determines answer. 	1.1.2
6! – 240 = 480 don't have 5, 7 adjacent		

(iv) If only three counters were picked out, one at a time, and placed in a row from left to right, how many of these numbers will have the digits in ascending order? (1 mark)

Solution	Specific behaviours	Point
$\binom{6}{3} = 20$	 ✓ Determines number. 	1.2.7

(b) At a mathematics competition, there are 4 students from Alpha School, 7 from Beta College and 5 from Gamma School. Only 6 students can present their solutions, with each school picking 2 students.

How many different orders are possible,

(i) if students are selected at random to present?

SolutionSpecific behavioursPoint $\binom{4}{2}\binom{7}{2}\binom{5}{2} \times 6! = 907200$ \checkmark Chooses two students from each school.1.2.1 \checkmark Determines arrangements.1.2.7

(ii) if students from the same school must present one after the other? (2 marks)

Solution	Specific behaviours	Point
$\binom{4}{2} \times 2! \times \binom{7}{2} \times 2! \times \binom{5}{2} \times 2! \times 3!$	 ✓ Chooses two students from each	1.2.1
= 60480	school and arrangements them. ✓ Determines total arrangements.	1.2.7

numbers together?

at a time, and placed in a row from left to right.

Solution

 $3! \times 3! \times 2 = 72$

(2 marks)

Point

1.2.1

(2 marks)

(2 marks)

A bag contains six counters numbered 4, 5, 6, 7, 8 and 9. The counters are picked out, one

How many six-digit numbers will have all the odd and all the even

CALCULATOR ASSUMED

Question 11

Vectors *a* and *b* are defined as $\mathbf{a} = -3\mathbf{i} + \mathbf{j}$ and $\mathbf{b} = 6\mathbf{i} - 6\mathbf{j}$.

(a) Determine 3a - b.

Solution		Specific behaviours	Point
$3\mathbf{a} - \mathbf{b} = -15\mathbf{i} + 9\mathbf{j}$	✓	Determines expression.	1.3.8

(b) Determine the value of scalars x and y if $x\mathbf{a} + y\mathbf{b} = -36\mathbf{i} + 32\mathbf{j}$.

Solution	Specific behaviours	Point
i components: $-3x + 6y = -36$ j components: $x - 6y = 32$	✓ Compares i and j components.	1.3.8 1.3.9
x = 2, y = -5	✓ Determines x and y .	

(c) Find a vector with the same length of **a** in the direction of **b**.

Solution		Specific behaviours	Point
$ {\bf a} = \sqrt{10}$	✓	Determines magnitude of a.	1.3.7
$\hat{\mathbf{b}} = \frac{1}{\sqrt{2}}(6\mathbf{i} - 6\mathbf{j}) = \frac{1}{\sqrt{2}}(\mathbf{i} - \mathbf{j})$	~	Determines unit vector $\mathbf{\hat{b}}$.	
$6\sqrt{2}$ $\sqrt{2}$ Required vector is $\sqrt{5}(\mathbf{i} - \mathbf{j})$	~	Determines required vector.	

(d) Determine the vector projection of **a** on **b**.

(2 marks)

Solution	Specific behaviours	Point
$(\mathbf{a} \cdot \hat{\mathbf{b}})\hat{\mathbf{b}} = -2\sqrt{2}\left(\frac{1}{\sqrt{2}}(\mathbf{i}-\mathbf{j})\right) = -2\mathbf{i}+2\mathbf{j}$	 ✓ Determines dot product of a • b̂. ✓ Determines vector projection. 	1.3.13

(e) The vectors **b** and $\mathbf{c} = 3\mathbf{i} + x\mathbf{j}$ are of equal length. Determine *x*.

(2 marks)

Solution	Specific behaviours	Point
$6\sqrt{2} = \sqrt{9 + x^2}$ $x = \pm 3\sqrt{7}$	 ✓ Determines magnitude of c. ✓ Solves for <i>x</i>. 	1.3.2

(f) Given $\mathbf{d} = 7\mathbf{i} + \mathbf{j}$, determine λ , such that $3\mathbf{a} + \lambda \mathbf{b}$ is perpendicular to \mathbf{d} . (3 marks)

Solution	Specific behaviours	Point
$(3\mathbf{a} + \lambda \mathbf{b}) \cdot \mathbf{d} = 0$ $((-9 + 6\lambda)\mathbf{i} + (3 - 6\lambda)\mathbf{j}) \cdot (7\mathbf{i} + \mathbf{j}) = 0$ $36\lambda - 60 = 0$ $\lambda = \frac{5}{3}$	 ✓ Indicates dot product is equal to 0. ✓ Substitutes in correctly, and determines dot product. ✓ Determines λ. 	1.3.11

© Academic Associates

MATHEMATICS SPECIALIST

(13 marks)

(1 mark)

(2 marks)

(3 marks)

points on the circle with centre O.

AC and *BD* are diameters, and *PEG* is a tangent to the circle at *E*.

It is given that $\angle DEP = \angle DBC = 20^{\circ}$.

- (a) Determine, giving reasons, the size of the following angles:
 - (i) ∠*DEC*

Solution		Specific behaviours	Point
∠DEC	\checkmark	Determines angle with reasons.	1.1.8
$= 20^{\circ}$ (angle in the same arc)			

(ii) ∠DCE

Solution		Specific behaviours	Point
∠DCE	\checkmark	Determines angle with reasons.	1.1.11
$= 20^{\circ}$ (angle alternate segment)			

(b) Using part (a) and triangle *CDE*, explain why $\angle COD = \angle DOE$.

Solution	Specific behaviours	Point
$\overline{CD} = \overline{DE} (CDE \text{ is isoceles})$ $\therefore \angle COD = \angle DOE \text{ (equal chords}$	✓ Indicates $\triangle CDE$ is isosceles. ✓ Explains why $\angle COD = \angle DOE$.	1.1.10
subtend equal angles)		

Specific behaviours

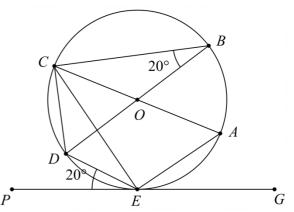
(c) Prove that $\angle EAC = 40^\circ$, giving reasons.

Solution $\angle AEC = 90^{\circ}$ (angle in a semicircle)

$\angle AEG = 50^{\circ}$ (angle on straight line)	\checkmark	Determines $\angle AEG = 50^{\circ}$.	1.1.11
$\angle ECA = 50^{\circ}$ (angle alternate segment)	\checkmark	Proves $\angle EAC = 40^{\circ}$.	
$\angle EAC = 40^{\circ}$ (angle sum in a triangle)	\checkmark	States reasons.	

(d) Is it possible to draw a circle through the points *E*, *O*, *C* and *D*. Justify your answer. (3 marks)

Solution		Specific behaviours	Point
$\angle OCD = 50^\circ + 20^\circ = 70^\circ$	✓	Determines ∠0CD.	1.1.14
$\angle OEA = 90^\circ - 50^\circ = 40^\circ$			1.1.15
$\angle OED = (90^{\circ} - 40^{\circ}) + 20^{\circ} = 70^{\circ}$	\checkmark	Determines $\angle OED$.	
As $\angle OCD + \angle OED \neq 180^{\circ}$			
then <i>EOCD</i> is not a cylic quadrilateral	\checkmark	Justifies that <i>EOCD</i> is not cyclic.	
Hence, a circle cannot be drawn			



(3 marks)

Point

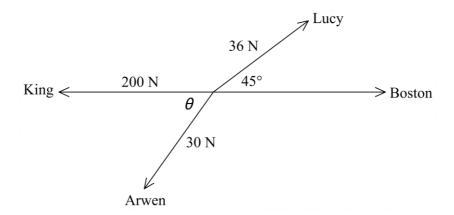
1.1.6

(1 mark)

(1 mark)

(6 marks)

Four dogs are arguing over a bone. The diagram shows the four dogs, the direction they are pulling in, and the force applied. The angle between King's force and Boston's force is 180°.



If the bone does not move, determine

(a) the size of angle θ ,

(3 marks)

(3 marks)

Solution	Specific behaviours	Point
Using j components: $36 \sin 45^\circ = 30 \sin \theta$ $\theta = 58.05^\circ$	 ✓ Recognises the need to look at j components. ✓ Determines force for Lucy and Arwen. ✓ Determines θ. 	1.3.1 1.3.14

(b) the force that Boston pulls at.

Solution	Spe	cific behaviours	Point
Comparing i components: $-200 - 30 \cos 58.05 + b + 18\sqrt{2} = 0$ b = 190.42 N	Compare Determin	es i components. nes b.	1.3.1 1.3.14
Boston = (190.42,0)	States fo	rce.	

MATHEMATICS SPECIALIST

CALCULATOR ASSUMED

Question 14

(a) Two students wrote in their notebooks an expression the teacher had written on the board.

Student 1 wrote: $\forall x \in \mathbb{R} (\exists y \in \mathbb{R}, x < y)$ Student 2 wrote: $\exists x \in \mathbb{R} (\forall y \in \mathbb{R}, x < y)$

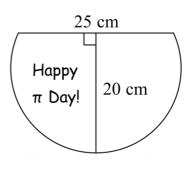
One student copied down the expression incorrectly. If the teacher said the statement was true, who wrote it down incorrectly? Justify your answer.

(3 marks)

(11 marks)

Solution	Specific behaviours	Point
Student 1's statement is true as y could be $x + 1$.	 Explains why first statement is true. 	1.1.4
Student 2's statement is false as there is no number x which is less than all real numbers y.	 ✓ Explains why second statement is false. ✓ Concludes Student 2 made a 	
Hence student 2 made an error.	mistake.	

(b) A teacher brought in cake for their class for Pi Day.
 Unfortunately, someone had sliced off a segment of cake and eaten it.



Use the given measurements to determine the diameter of the original cake, to one decimal place.

(4 marks)

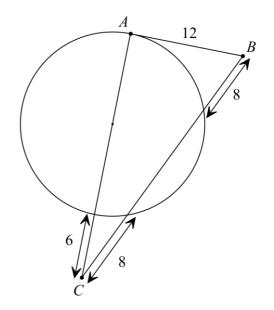
Solution	Specific behaviours	Point
x 12.5 20	 ✓ Divides chord of 25 cm into two equal sections. 	1.1.12
$20x = 12.5^{2}$ x = 7.81 Diameter = 20 + 7.81 = 27.8 cm	 ✓ Uses intersecting chord theorem. ✓ Determines missing length. ✓ Determines diameter. 	

CALCULATOR ASSUMED

(c) *AB* is a tangent to the circle given circle.

Determine the area of $\triangle ABC$, correct to one decimal place.

(4 marks)



Solution (1)		Specific behaviours	Point
Let the length of the part of secant <i>BC</i> inside the circle be x $12^2 = (x + 8) \times 8$ x = 10	\checkmark	Uses secant-tangent theorem. Determines length of secant in circle.	1.1.13
diameter = $\sqrt{26^2 - 12^2}$ diameter = 23.07	~	Determines diameter.	
Area = $\frac{1}{2} \times 23.07 \times 12 = 138.4$ units ²	~	Determines area.	
Solution (2)		Specific behaviours	Point
Let the length of the part of secant <i>BC</i> inside the circle be x $12^2 = (x + 8) \times 8$ x = 10	\checkmark	Uses secant-tangent theorem. Determines length of secant in circle.	1.1.13
$\cos B = \frac{12}{26}$ $B = 62.51^{\circ}$	~	Determines angle.	
Area = $\frac{1}{2} \times 26 \times 12 \sin 62.51$ = 138.4 units ²	~	Determines area.	

Two snails, Racer (R) and Speedy (S), are competing in a race.

The snails start in opposite corners of a square of side length 10 cm, where (0,0) represents the origin.

The initial position (in cm) and velocity vectors (in $\rm cm s^{-1}$) of the two snails are given by:

$$\mathbf{r}_{R} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \mathbf{v}_{R} = \begin{pmatrix} 0.6 \\ 0.2 \end{pmatrix}$$
$$\mathbf{r}_{S} = \begin{pmatrix} 10 \\ 10 \end{pmatrix} \quad \mathbf{v}_{S} = \begin{pmatrix} -0.4 \\ -0.3 \end{pmatrix}$$

Let *t* represent the time in seconds since the snails left their respective corners.

The diagram above shows the starting positions, and the direction the snails are travelling in.

(a) Which snail is the fastest? Justify your answer using an appropriate calculation. (2 marks)

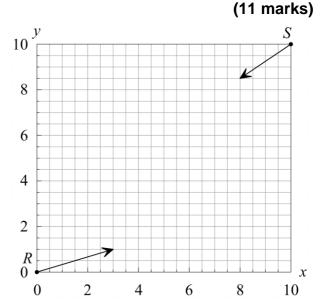
Solution		Specific behaviours	Point
$ \mathbf{v}_{R} = 0.6325$	\checkmark	Determines magnitude of velocity	1.3.1
$ {\bf v}_{\rm S} =0.5$		vectors.	1.3.2
Racer is fastest	\checkmark	States Racer is fastest.	

(b) Find the angle between the two snails' direction.

Solution	Specific behaviours	Point
161.57°	 Uses technology to determine angle. 	1.3.10

(c) Determine the position of each snail after *t* seconds.

Solution	Specific behaviours	Point
$\mathbf{r}_{R}(t) = \begin{pmatrix} 0\\0 \end{pmatrix} + t \begin{pmatrix} 0.6\\0.2 \end{pmatrix}$ $\mathbf{r}_{S}(t) = \begin{pmatrix} 10\\10 \end{pmatrix} + t \begin{pmatrix} -0.4\\-0.3 \end{pmatrix}$	 ✓ Determines position vector for Racer. ✓ Determines position vector for Speedy. 	1.3.14



10

(1 mark)

(2 marks)

The winner of the race is the first snail to reach the opposite corner.

Assuming the snails continue in the same direction until they hit the edge of the square, and then travel at the same speed towards the opposite corner,

(d) determine which snail wins the race.

(6 m	narks)
------	--------

Solution	Specific behaviours	Point
For Racer: Reaches edge when i component is 10 10 = 0 + 0.6t $t = \frac{50}{3} \sec s$ $\mathbf{r}_R \left(\frac{50}{3}\right) = \left(\frac{10}{10}\right)$ Distance to corner $= 10 - \frac{10}{3} = \frac{20}{3} \text{ m}$ Time to corner $= \frac{20}{3} \div 0.6325 = 10.54$ Total time $= \frac{50}{3} + 10.54 = 27.21 \sec s$		1.3.14
For Speedy: Reaches edge when i component is 0 0 = 10 - 0.4t t = 25 secs $\mathbf{r}_{S}(25) = \begin{pmatrix} 0 \\ 2.5 \end{pmatrix}$ Distance to corner = 2.5m Time to corner = 2.5 ÷ 0.5 = 5 Total time = 25 + 5 = 30 \text{ secs}	 Uses i component to determine time when each snail reaches edge. Determines position of each snail when it reaches the edge. Determines distance to corner. Uses speed from (a) to determine time to corner for each snail. Determines total time for each snail. 	
Racer wins the race	✓ Determines Racer wins the race.	

MATHEMATICS SPECIALIST

Question 16

(4 marks)

A bag consists of 10 cards, numbered 0 to 9 inclusive.

(a) Show that if a student selects 7 of them, then there are two cards with a sum of 10.

(2 marks)

Solution	Specific behaviours	Point
Pairing the cards to make sums of 10 gives: 1 2 3 4 9 8 7 6 8 7 6	✓ Pairs cards to give a sum of 10.	1.2.6
If the pairs, 0 and 5 are the pigeonholes, then as there are 6 pigeonholes, selecting 7 cards will give a sum of 10.	 ✓ Uses pigeonhole principle to explain answer. 	

At least one card in the bag is now removed. The student does not know which card(s) have been removed.

(b) The student now selects **6 cards**. Determine the **minimum** number of cards that can be removed, to guarantee at least two of the six chosen cards sum to 10. Justify your answer.

(2 marks)

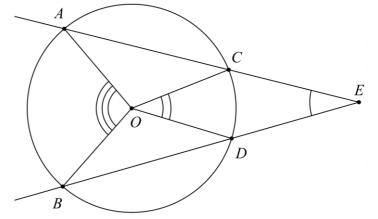
Solution		Specific behaviours	Point
As 6 cards are selected there must be 5 pigeonholes.	✓	States there needs to be 5 pigeonholes.	1.2.6
These 5 pigeonholes could be: 3 pairs as well as 0 and 5 i. e. 8 cards 4 pairs as well as either 0 or 5 i. e. 9 cards	5		
As the student is unaware of the cards removed then two can be removed.	~	Determines minimum number of cards that can be removed.	

(11 marks)

The secant angle theorem states that the angle formed by two intersecting secants is half of the difference of the two interior angles.

This is

$$\angle CED = \frac{\angle AOB - \angle COD}{2}$$



(a) (i) Let $\angle AOB = 2\theta$, then state the size of angle $\angle ACB$. (1 mark)

Solution	Specific behaviours	Point
$\angle ACB = \theta$	✓ Determines angle.	1.1.7

(ii) Let $\angle COD = 2\phi$, then state the size of angle $\angle CBD$.

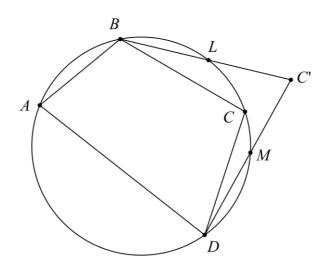
(1 mark)

Solution	Specific behaviours	Point
$\angle CBD = \phi$	✓ Determines angle.	1.1.7

(iii) Using $\triangle ECB$ and parts (i) and (ii), prove the secant angle theorem. (3 marks)

Solution		Specific behaviours	Point
In triangle ΔECB			1.1.15
$\angle ECB = 180^{\circ} - \theta$ (straight line)			
$\angle CEB = 180^{\circ} - (180^{\circ} - \theta) - \phi$	\checkmark	Shows use of ΔECB .	
(sum of angles in a triangle)			
$\angle CEB = \theta - \phi$	~	Determines expression in terms of	
$\angle CEB = \frac{2\theta - 2\phi}{2\phi}$		θ and ϕ .	
$\angle AOB = \frac{2}{\angle AOB} - \angle COD$	\checkmark	Broves required result giving	
$\angle CEB = \frac{\angle AOB - \angle COD}{\Box}$	v	Proves required result giving	
2		reasons.	

In the diagram below ABCD is a quadrilateral with $\angle ABC + \angle CDA = 180^{\circ}$.



(b) Use the secant angle theorem from part (a), and proof by contradiction to prove that *ABCD* is cyclic.

Hint: Prove that $\angle BCD$ must lie on the circumference.

(6 marks)

Solution		Specific behaviours	Point
Assume C'lies outside the circle Given $\angle ABC' + \angle C'DA = 180^{\circ}$ (1)	~	States assumption.	1.1.2 1.1.9
By secant angle theorem: $\angle BC'D = \frac{\text{reflex}\angle BOD - \angle LOM}{2}$ $\angle BC'D = 180 - \frac{\angle BOD}{2} - \frac{\angle LOM}{2}$ (2)			
$\angle BC'D = 180 - \frac{\angle BOD}{2} - \frac{\angle LOM}{2} (2)$	~	Shows use of the secant angle theorem.	
Centre angle is half angle at circumfrence: $\angle BAD = \frac{\angle BOD}{2} (3)$	~	Expresses $\angle BAD$ in terms of $\angle BOD$.	
$\angle BAD + \angle ABC' + \angle BC'D + \angle C'DA$ = 360° (angles in a quadrilateral)			
Substituting (1) and simplifying: $\angle BAD + \angle BC'D = 180^{\circ}$	~	Uses (1) to derive relationship between $\angle BAD$ and $\angle BC'D$.	
Substituting (2) and (3): $\frac{\angle BOD}{2} + 180 - \frac{\angle BOD}{2} - \frac{\angle LOM}{2} = 180^{\circ}$ $\therefore \frac{\angle LOM}{2} = 0^{\circ}$	~	Uses (2) and (3) to determine $\angle LOM = 0^{\circ}$.	
If $\angle LOM = 0^\circ$, then C' cannot lie outside the circle, which contradicts our assumption $\therefore ABCD$ is cyclic	~	Explains how $\angle LOM = 0^{\circ}$ contradicts the assumption.	